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Parallelized 4D Structure, Shape, and Motion Reconstruction
of Vessels from Multiview X-Ray Angiograms

Xinglong Liu · Fei Hou∗ · Aimin Hao · Hong Qin

Abstract In this paper, we present a parallel 4D ves-

sel reconstruction algorithm that simultaneously recov-

ers 3D structure, shape, and motion based on multi-

ple views of X-ray angiograms. The fundamental goal

is to assist the analysis and diagnosis of intervention-

al surgery in the most efficient way towards interac-

tive and accurate performance. We start with a ful-

ly parallelized algorithm to extract vessels as well as

their skeletons and topologies from dynamic image se-

quences. Then, instead of resorting to registration, we

present an space voxelization algorithm to formulate

the reconstruction problem as an energy minimization

problem with color, coherence, and topology constraints

to reconstruct the 3D vessel initially, which is robust

to combat noise and incomplete information in images.

Next, we incorporate temporal information into our en-

ergy optimization framework to track and reconstruc-
t 4D kinematics of the dynamic vessels, which is also

capable of recovering previous incomplete and mislead-

ing shapes acquired from static images otherwise. We

demonstrate our system in coronary arteries reconstruc-

tion and movement tracking for percutaneous coronary

intervention surgery to help medical practitioners learn

about the 3D shapes and their motions of the coronary

arteries of specific patient. We envision that our system

would be of high assistance for diagnosis and therapy

to treat vessel-related diseases in a clinical setting in

the near future.
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1 Introduction and Motivation

The morbidity of Cardiovascular Disease (CVD) is rapid-

ly increasing over the past few decades. The golden

standard for diagnosis of CVD is X-ray coronary an-

giography which is only offering 2D projection of rele-

vant tissues/organs from 3D space. Yet, X-ray images

not only lack a significant amount of 3D information of

the coronary arteries, but also suffer from the viewing

angle dependence, overlapping and blurring, etc. Accu-

rate and rapid 3D reconstruction from limited views is

necessary for medical practitioners towards earlier di-

agnosis and better treatment. This paper’s originality

hinges upon our novel and parallel solution to the simul-

taneous 4D structure, shape, and motion reconstruction

from time-labeled image sequences.

Even though various work has been done to tackle

the reconstruction problem in X-ray views, there are

still some unsolved challenges existing in current meth-

ods. First, the noisy and blurry X-ray views may give

rise to incorrect reconstruction. Second, accurate recon-

structions need five or even more views of angiograms

with exact angle requirements, which is hard to oper-

ate for clinical use. Third, current 3D reconstruction

methods mostly rely on the registration between image

pairs, which are less robust and much hard to incor-

porate with constraints such as consistency, continuity

and coherence. Finally, since there are so many pro-

cessing procedures involved during analysis and recon-

struction, the overall computation is extremely time-

consuming.
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To overcome such shortcomings, we present an effi-

cient vessel reconstruction and motion tracking system

from multiple X-ray views. The pipeline is shown in

Fig. 1 consisting of two stages: vessel extraction (Sec-

tion 3) and 4D reconstruction (Section 4). In the first

stage, we design a parallel algorithm to extract the ves-

sels as well as their skeletons and topology in realtime.

In the second stage, we devise a novel space voxelization

algorithm to reconstruct 4D dynamic vessels robustly

to resist noise and combat incomplete information in

images. Moreover, the parallel CUDA implementation

greatly enhances efficiency in our system. The main

contributions of our work include:

– An efficient parallelized thinning and refining method

for extracting vessel skeletons and key points.

– A novel space voxelization algorithm to reconstruct

vessels based on energy optimization solved using

belief propagation with color, coherence and topolo-

gy constraints, which is robust to noisy and incom-

plete information from images.

– An improved energy formulation that unites tempo-

ral information with spatial information for better

recovering 4D kinematics of vessels, whose advan-

tages also include robustness to noisy and incom-

plete information in static images and ability of re-

pairing misleading shapes.

– A vessel reconstruction and tracking system with

the fully parallelized image processing algorithm and

partially parallelized Belief Propagation algorithm.

2 Related Work

Our work relates to vessel extraction from images, ves-

sel reconstruction, etc. We now briefly review them in

the following categories.

Vessel Extraction. Hoover et al. [1] used a math-

ematical filter to entails a broad range of vessel en-

hancement and Li et al. [2] conducted this task using a

non-linear filter. Frangi et al. [3] used the eigen values of

Hessian matrix to extract the tube-like structures from

X-ray images. Condurache et al. [4] used this method

while adding a hysteresis thresholding method to purify

the extracted data. But they are not robust to handle

blurry images.

Skeleton Extraction. Centerline extraction can

be divided into six categories of techniques: pattern

recognition techniques, deformable model based tech-

niques [5][6], tracking-based techniques [7][8][9], artifi-

cial intelligence based techniques, neural network-based

techniques, and miscellaneous tube-like object detec-

tion techniques. Each one contains many sub-types such

as multi-scale approaches, mathematical morphology

approaches. Readers could refer to [10] for an overview

of the centerline extraction technologies. Previously pro-

posed techniques are mostly serial and usually hard to

be parallelized.

3D Reconstruction. Definitely, 3D reconstruction

from 2D projection images is feasible and reasonable.

Wellnhofer et al. [11] and Messanger et al. [12] evaluat-

ed that 3D reconstructions of coronary arteries from 2D

X-ray image sequences permit accurate results of the re-

al data. The biplane X-ray system takes two (mostly)

synchronized projection of the coronary arteries [11][12]

while the mono-plane (single-plane) system [13] can just

take one view at the same time, therefore selection

of asynchronous images from multiple views is need-

ed. Movassaghi et al. [14] used multiple projections for

realistic vessel lumen simulation. Sprague et al. [15] u-

tilized the benefits of three projections experimentally.

Hansis et al. [16] had used multiple projections from a

single rotational X-ray angiography to reconstruct the

3D centerline and the topology. Nguyen et al. [17] pro-

posed a method based on motion and multiple views

using a single-plane imaging system. Most of the meth-

ods above rely on hard registration which is rather un-

stable in the blurry X-ray views and the constrains used

by registration are too simplex to take varied affection

terms into account.Other routines such as knowledged-

based or rule-based methods using the vascular network

model [18] [19] are hard to be generalized.

Motion Tracking. Prior to the work of Ruan et

al. [20], most analysis work focuses on static reconstruc-

tion using feature matching techniques. Similar method

based on the same prediction-projection-optimization

loop is proposed in [21]. In [22], a motion trajectory

is computed for each point from the segmented artery

tree independently, they used a set of vectors describ-

ing the general motion of each artery branch. Chen et

al. [23] reconstructed the vessel tree and performed mo-

tion tracking on this tree with constraints. Based on

the work of Mourgues et al. [24], Shechter et al. [25]

presented a 3D method for tracking the coronary ar-

teries through a temporal sequence of biplane X-ray

angiograms. On the other side, Shechter et al. [26] pro-

posed a parametric model to decompose the motion

field into independent cardiac and respiratory compo-

nents.

Meanwhile, Blondel et al. [27] presented a method

to compute 4D tomographic representations of coronary

arteries from a single view of rotational monoplane an-

giograms based on 4D B-spline solids to model motion-

s. Bouattour et al. [28] formulated the tracking prob-

lem as a 3D-2D registration problem in which the 3D

model deforms in space to best fit the given set of 2D

angiogram. In [29], a projection-based motion compen-
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Fig. 1: Work pipeline. Left part: Image preprocessing. Right part: Dynamic reconstruction. From frame K to frame K+1:
Reconstruction with time T.

sation and reconstruction method of coronary segments

and cardiac implantable devices from rotational X-ray

angiograms is developed.

Most of current tracking methods are either based

on 3D to 2D projection or simple 2D registration using

simple weighting term, leading to unsatisfactory results

and less robustness. Methods based on mathematical

analysis can simulate true motion of humans’ heart,

but they are specific and can not be generalized.

3 Vessel and Skeleton Extraction

Given X-ray angiograms, we design a realtime algorith-

m to extract the vessels and their skeletons as well as

topologies robustly which are readily available for fur-

ther reconstruction. We present a novel parallel method

to extract vessels as well as their skeletons (Section 3.1)

and finally the skeletons are segmented into segments

split by bifurcated points to derive the topology struc-

tures (Section 3.2). All of these steps are run on GPU

in realtime.

3.1 Vessel and Skeleton Extraction

Original angiograms acquired from the X-ray machine

suffer from low contrast, low lumen, etc. To overcome

these problems, we first apply the enhancement of ra-

diography based on Multiscale Retinex (MSR). Then,

we use the gain/offset method to fix the negative val-

ues. Finally we convolute the original images by four

Gaussian filters with different scales and compute the

Fig. 2: Vessel extraction results. (a) Original image; (b) Pos-
sibility image; (c) Binary image; (d) Enlarged image with
highlighted points and skeletons.

weighted average of them, giving rise to satisfactory re-

sults.

After the enhancement, we extract the vessel skele-

tons for further vessel reconstruction. We parallelize

the algorithm proposed in [3] which relies on a mul-

tiscale Hessian matrix and apply it to MSR enhanced

angiograms and extract tube-like structures. Extracted

vessels could be found in Fig. 2 (b-c).

To simplify the reconstruction, we use skeletons to

present vessel structures. Our skeleton extraction method

mainly consists of three steps. First, a typical two-step

thinning method is used to extract the rough skeletons.

Second, we refine the skeletons to ensure its one-pixel

width and use a pattern based method to extract it-
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Fig. 3: Thinning refinement. (a) Designations of nine pixels
in 3×3 window; (b) Bifurcation patterns; (c) Rough skeletons;
(d) Refined skeletons.

s bifurcations and end points. At last, we collect the

skeletons from bifurcations and derive the entire struc-

ture of the skeleton tree. All these three steps are done

on GPU with the help of CUDA and achieve great effi-

ciency.

In order to extract the skeleton, we use a two-step

local-feature based thinning method [30] at beginning.

Although the two-step thinning method provides a good

initialization, the results are far from ideal enough for

extracting the key points and structure of the skeletons

because of the redundant points shown in Fig. 3 (c).

We design a novel parallelized method to conduct the

refinement while keeping efficiency.

First of all, we label points as deleted based on it-

s neighbours. As shown in Fig. 3 (a), consider P1 as

the candidate, if P1 = 1, P1 is valid and vice versa.

There are four ways that this point should be labeled

as deleted : (1) P2 = P8 = 1 and P4 = P5 = P6 = 0; (2)

P2 = P4 = 1 and P6 = P7 = P8 = 0; (3) P4 = P6 = 1

and P8 = P9 = P2 = 0; (4) P6 = P8 = 1 and P2 = P3 =

P4 = 0.

Second, deleted information together with point neigh-

bours are used to decide which points should really be

deleted. Similarly, consider P1 as one of the deleted

labeled points according to Fig. 3 (a), there are two

ways making this point really be deleted: (1) None of

P2, P4, P6, P8 is labeled as deleted ; (2) Only P8 or P6

are labeled.

Meanwhile, there are four ways deciding the removal

of the neighbours of P1: (1) If P2 and P4 are labeled as

deleted, P2 and P4 should be removed; (2) If P6 and

P8 are deleted while P5 and P9 are not deleted, P6 and

P8 should be removed; (3) If P4 and P6 are labeled as

deleted, P4 and P6 should be removed; (4) If P2 and P8

are deleted while P3 and P7 are not deleted, P2 and P8

should be removed.

Refined results are shown in Fig. 3 (d). Boxes with

the same color are corresponding to the same areas be-

tween rough and refined skeletons. The refined skele-

tons would have just one-pixel width and easy to be

processed by our following procedures.

3.2 Topology Identification

It is necessary to extract the key points to derive the

topologies of the skeletons for further reconstruction.

For bifurcations, we adopt a pattern-matching method,

in which the five basic patterns are shown in Fig. 3 (b)

and through changing these patterns by 90, 180, and

270 degree, all patterns could be found. On the other

hand, for end points, we examine its eight neighbors

and select those that just have one neighbor. Extracted

key points could be found in Fig. 2 (d). Bifurcation and

end points are labeled using filled circle marks.

Once the key points are extracted, skeleton seg-

ments are easy to be derived. Actually, skeleton seg-

ments start from bifurcation points and end at bifurca-

tion or end points. In our approach, we start from the

bifurcation points and examine the eight neighbors of

current point.

Since one skeleton line consists of two bifurcation-

s or one bifurcation with one end point, skeleton seg-

ments extracted using this method are redundant be-

cause each bifurcation point is computed twice. There-

fore, we transverse all the skeletons and remove du-

plicate segments. The skeleton segments are drawn in

Fig. 2 (d). Different colors indicate different skeleton

branches.

4 4D Shape and Motion Reconstruction

Conventional image-based 3D reconstruction requires

registration between different projection views. Howev-

er, there are fewer features in the X-ray images than

general camera images. Thus, it is hard to match the

corresponding points between X-ray images reliably. The

mistakes during registration may lead to much more

huge errors during reconstruction. Meanwhile, it’s al-

so hard to add constraints such as the connectivity of

the vessel neighbors, or prior knowledge for registra-

tion based methods , resulting in a significant waste

of the various original information. Instead of relying

on registration, we devise a space voxelization algorith-

m to recover the initial shape of the 3D vessels as an

energy minimization problem (Section 4.1). Meanwhile,

the continuously-moving frames provide strong clues for
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Fig. 4: Energy constraints determining the probability.

their subsequent frames. Based on the initial shapes,

we generalize the above algorithm and design a robust

motion tracking algorithm to reconstruct the dynamic

vessels of the subsequent frames (Section 4.2).

4.1 Initial 3D Reconstruction

Instead of using conventional image reconstruction meth-

ods, we bypass the registration issue and discretize the

space into voxels to formulate the 3D reconstruction

problem as an energy minimization problem as described

in Fig. 5. It is obvious that the unknown 3D skeleton

should satisfy the following conditions: (1) The projec-

tion of every point of the 3D skeleton onto every 2D

X-ray image is on the 2D skeleton; (2) The 3D skeleton

is continuous with almost the same topology to the 2D

skeleton except occlusion.

Actually, the 3D skeletons could be regarded as a

skeleton tree consisting of several skeleton segments or

branches. Each segment could be seen as being made

up of discretely sampled points. In order to solve the

optimization problem, we quantize the 3D space into

discrete voxels. Each 3D point p in the sampled space

could be assigned with a probability of belonging to the

3D skeletons. The probability could be determined by

the following terms which are described in Fig. 4:

– Number of views in which the projected point of p

is valid, which is called color consistency.

– Distance between p and its neighbors in the same 3D

skeleton to ensure continuity which is called contin-

uous consistency.

– Distance between the projected 2D point and its

nearest valid 2D skeleton point on the same view,

which is called topological consistency.

Finally, the sampled 3D space between the opti-

cal center and the intensifier is discretized into voxels

Fig. 5: 3D space sampling.

and could be regarded as a Markov Random Field such

that the reconstruction problem could be formulated as

an energy minimization problem with color, continuous

and topological constraints. We use three views of an-

giograms in a cardiac cycle and choose the projection

view I1 as a reference view with least foreshortening

and overlapping among all the views. The 3D space is

divided into 3D slices which we call layer L = (l1, l2...ln)

with a given depth interval. The 3D slicing and sam-

pling is described in Fig. 5.

Each depth can be assigned a label li. Meanwhile,

each skeleton point on reference view I1 corresponds

to one projected line from the source to the intensifier

through all the layers. Therefore, for a given pixel p on

I1, the pair (p, li) uniquely determines a point in 3D

space. So, the goal of 3D reconstruction is to optimally

assign an label li to each p on the centerline of the

reference view I1. The energy function is defined as

E(f) =
∑
p∈P

Dp(fp) + λ
∑

p,q∈N
Vp,q(fp, fq). (1)

We define the Vp,q(fp, fq) as the Euclidean distance

to ensure the continuity between adjacent points p and

q. And we define the Dp(fp) as the color consistency

which is described as

Dp(fp) =
1

(n− 1)

n∑
i=2

Pi(x, y), (2)

where n is the number of back projected points, Pi(x, y)

is the projection value of point p on the i-th view, which

is defined as

Pi(x, y) =


Wh, p(x, y) ∈ Ii
Wl, N (p(x, y)) /∈ Ii
1
N

∑N
i=1 Vi(x, y), otherwise

, (3)
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where p(x, y) ∈ Ii denotes that p(x, y) is on the skeleton

of Ii. Wh and Wl are two constants that control the

highest and lowest value (in our experiments they are

set to 0.01 and 1.0, respectively). For a grey scale image,

N (p(x, y)) denotes point p(x, y) and the 8 neighbors of

p(x, y). In our methods, if p(x, y) can not be found in Ii,

we compute its 8 neighbors and make the average value

be the value of point p(x, y). If none of its neighbors is

valid, it is assigned to Wl.

We find the minimum of E(f) using the Belief Prop-

agation (BP) algorithm, which is comprised of two main

steps, message propagation and energy minimization.

In the message propagation step, the color of point

p(x, y) ∈ I1 is updated by Vp = Vp + αminD + (1 −
α)VpminD

, where α is a constant controlling the weight

of the neighbors’ color consistency and dist consisten-

cy. In our experiments, we set α to 0.85. minD stands

for the minimum distance from p(x, y) to its neighbors,

and VpminD
stands for the value of the minimum dis-

tance point. In our energy minimization, different from

typical BP, the current energy of the i-th depth(li) is de-

fined as ei(pi) = min[γD(pi, q)+(1−γ)V (q)+ei−1(q)],

where q denotes the candidate 3D sample points corre-

sponding to the projected point of N o(pi), and N o(pi)

represents all neighbors of pi except pi itself.

At the end, we compute the minimum sum of all the

grouped vessel skeletons’ cost and obtain the optimal

solution for the whole vessel skeleton tree. We obtain

the initial 3D shape of the vessels.

4.2 Dynamic Reconstruction

Based on the initial reconstruction, we continue to gen-

eralize the above algorithm to track the vessel motions

called Dynamic Reconstruction. Each image pair in the

sequence could correspond to one special vessel skele-

ton in the motion sequence. Due to the characteristics of

cardiac motion, these skeletons should be just changed

slightly from its proceeding pose and changed slightly

to its subsequent pose. Considering movement tracking

of one frame to its next frame, reconstructed vessels of

this frame can be regarded as prior knowledge to its

subsequent pose. Deformed skeletons in the next frame

should be close enough to the proceeding shape and the

movement should be small. Since we treat the sample

space as a discrete voxel space (a.k.a. Markov Random

Field), this can be done by re-weighting the sampled

valid points according to the distance to their corre-

sponding prior points. Therefor, the energy term E(f)

from the standard energy is reformulated as

E
′
(f) = E(f) +Rp,k(fp, gk), (4)

Fig. 6: GPU implementation for image preprocessing.

where Rp,k(fp, gk) is the new constraint to attract the

shape not going far away from its prior shape gk. We use

the minimum distance between p and its correspond-

ing prior point k to evaluate p and re-weight its ener-

gy. Rp,k(fp, gk) is a piecewise linear function based on

Dp,g(k) which is the minimum distance from p to the

prior point. In our implementation, we set five pieces:

[0, 0.5], (0.5, 1.0], (1.0, 2.0], (2.0, 5.0], (5.0,+∞).

According to Eq.(4), points with distance close e-

nough should be with small energy and have more chance

to be selected, while points with large distance should

be with low energy to penalize its score. Even worse, it

might be considered to be deleted (ignored) from the

candidate queue. In our implementation, we may have

thousands of prior points and even millions of sam-

pled candidate points. To compute the minimum dis-

tance efficiently, we design a three-dimensional kd-tree.

It provides the ability of searching nearest neighbors in

O(log(n)) time. During each tracking frame, for every

sampled point achieved from CUDA kernel, we compute

its distance to the prior point and add up the weight-

ed energy. Then, we use belief propagation to compute

the optimal solution. At the end, this optimized result

is initialized as the prior shape for the next frame.

5 CUDA-based Parallel Algorithms

Our methods are evaluated carefully at the very start

of attempting to design parallelized implementation for

performance enhancement, which allows us to take the

full advantage of CUDA in skeleton tracking and extrac-

tion and gain great efficiency in belief propagation mes-

saging. Image preprocessing with CUDA is described

in Fig. 6. The angiograms are divided into image blocks

and each pixel corresponds to one CUDA thread.
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Parallelized Vessel Extraction. Since the com-

putation on every pixel is independent, the vessel ex-

traction algorithm is very suitable to be parallelized

and every pixel is mapped to a CUDA thread for par-

allelization. For every angiogram among the imaging

sequence and for every specified σ, our parallelized ex-

traction method consists of the following steps. First,

we build the Gaussian kernel mask depending on σ on

CPU side and transfer them into the GPU. Second,

we convolve the entire image using this Gaussian ker-

nel and each pixel point on the image corresponds to

one CUDA kernel. Third, we extract the eigenvalues

and eigenvectors and compute the coefficients for each

point’s Hessian matrix. This is also done per kernel on

GPU. Finally, we use a double swap buffer on GPU to

compute the possibility of a pixel being part of vessel

structures (refer to Eq. 15 of [3] for details). In all the

procedures, except initialization, data are on GPU side

and stored for further processing.

Parallelized Thinning. After vessel extraction,

extracted vessels are stored on GPU to be further pro-

cessed for skeleton tracking. During tracking, each valid

vessel point is mapped to one CUDA kernel. In each ker-

nel, we compute the point’s eight neighbors and assign

zero to these not fulfilling our thinning condition as de-

scribed in Section 3.1. Finally, any points not belonging

to the skeleton are removed.

In the key point extraction step, every valid point is

mapped to one CUDA thread. For every point, we iter-

ate four different degrees and five patterns (Fig. 3(b)) to

identify whether it is a bifurcation. Meanwhile, points

with just one neighbor are recognized as end points.

Once we get the key points, we collect the skeletons

in a parallelized way. Every bifurcation point is mapped

to a CUDA thread and we perform nearest neighbor

search in each CUDA kernel ending at either bifurcation

or end point to extract skeleton segment.

Parallelized Message Propagation. Due to the

serial characteristics of BP, we are unable to run it com-

pletely in parallel. Nonetheless, energy weighting based

on distance computation among thousands of neighbor

points during message propagation can be greatly accel-

erated by parallelization. In such situations, we imple-

ment a parallelized distance computation method with

the help of CUDA which is described in Algorithm 1.

The problem can be abstracted as follows: given two

point vectors of dimension m and n, we intend to com-

pute the minimum distances from every point of the

first vector to the points of the second vector. We com-

pute the n × m distance matrix using n × m CUDA

threads and then search for the minimum values of ev-

er columns parallelly to derive a m vector. Finally we

normalize the vector and add them to the candidate

Fig. 7: Comparison of belief propagation in CPU and GPU.
The time cost of CPU implementation increases fast while
the sampled points increasing.

energy values. Comparison for our parallelized message

propagation and a classical BP is illustrated in Fig. 7.

The horizontal axis indicates the number of processed

points. The vertical axis shows the processing time. The

blue line and red line respectively indicate processing

method using CPU and GPU which have shown our

method has gained great efficiency in message propa-

gation.

6 Experiments and Validation

6.1 Results

The reconstruction method is tested on both synthetic

data and real clinical data which are definitely acquired

at 5FPS and 15FPS speed for 512×512 images. Com-

pared with the real data, the reconstruction of synthetic

data is easy to be assessed because of the availability of

the vessel ground truth. The final reconstruction results

of synthetic data are shown in Fig. 8.

In the top row of Fig. 8, the yellow lines indicate the

reconstructed skeletons using our method. The green

lines indicate the ground truth of the synthetic data.

The white box is the bounding box of the ground truth.

Meanwhile, eight frames from synthetic data are shown

on the top row of Fig. 12 and the reconstructed vessels

are shown in the bottom row. It may be noted that we

can reconstruct the vessels’ motion as well.

Real clinical data contain more noise or even incom-

plete information. Some of the reconstructed dynamic

vessels are shown in Fig. 9.

6.2 Validation

In order to evaluate the precision of our algorithm, we

project the reconstructed skeletons back onto the image
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Fig. 8: Results of the synthetic data.

Fig. 9: Reconstruction from real data.

plane. Fig. 10 (a) shows the 3D ground truth and recon-

structed skeletons. Fig. 10 (b) shows the projected real

and reconstructed skeletons. Fig. 10 (c) shows the error

statistics. Fig. 11 shows re-projected clinical data and

the error statistics. For both Fig. 10 (c) and Fig. 11,

the X axis represents the error interval, while the Y ax-

is is the corresponding number. Errors are mostly dis-

tributed in the lower interval which demonstrates high

accuracy of our method.

Because of heavily blurred and incomplete image

data, some errors may occur in reconstruction during

some frames as shown in the second frame of Fig. 12.

The vessels marked in the white rectangle are missing in

the second frame and they are recovered in the following

frames, illustrating the robustness of our method that

could combat the incomplete data.

6.3 Efficiency Analysis

Time analysis for our method is quantized and shown

in Fig. 13. All these experiments are done on a work-

station with one NVIDIA GTX-780 GPU, one Intel(R)

Fig. 10: Re-projected error of the synthetic data and ground
truth.

Fig. 11: Re-projected error of the clinical data.

Core(TM) i7-3770 CPU and 8GB RAM using a set of

37-frame sequence.

7 Conclusion and Discussion

We have developed a new 4D dynamic vessel recon-

struction system from X-ray angiograms. The unique-

ness of our system is its simultaneous handling on struc-

ture, shape, and motion during vessel reconstruction.

At the technical core of our system are the parallel al-

gorithms towards interactive performance. Specifically,

at the vessel skeleton extraction stage, we developed
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Fig. 12: Vessel motion tracking between sequential frames.

Fig. 13: The overall time analysis together with the detailed
statistics of each step based on 37 frames of synthetic data.

a realtime parallel method to extract vessels as well as

their skeleton and topology from X-ray views. At the re-

construction stage, we have presented a space voxeliza-

tion algorithm to formulate the dynamic reconstruction

problem as an energy optimization problem solved by

belief propagation without explicit registration. The ex-

perimental results from both synthetic and clinical da-

ta have shown that our method is robust for noise and

even incomplete data because of the algorithms’ global

optimization nature. Our immediate goal for ongoing

work is to continue to improve our system and its func-

tionalities towards clinic trial in the near future.
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